Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Nat Commun ; 15(1): 3288, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627401

RESUMO

Lactation insufficiency affects many women worldwide. During lactation, a large portion of mammary gland alveolar cells become polyploid, but how these cells balance the hyperproliferation occurring during normal alveologenesis with terminal differentiation required for lactation is unknown. Here, we show that DNA damage accumulates due to replication stress during pregnancy, activating the DNA damage response. Modulation of DNA damage levels in vivo by intraductal injections of nucleosides or DNA damaging agents reveals that the degree of DNA damage accumulated during pregnancy governs endoreplication and milk production. We identify a mechanism involving early mitotic arrest through CDK1 inactivation, resulting in a heterogeneous alveolar population with regards to ploidy and nuclei number. The inactivation of CDK1 is mediated by the DNA damage response kinase WEE1 with homozygous loss of Wee1 resulting in decreased endoreplication, alveologenesis and milk production. Thus, we propose that the DNA damage response to replication stress couples proliferation and endoreplication during mammary gland alveologenesis. Our study sheds light on mechanisms governing lactogenesis and identifies non-hormonal means for increasing milk production.


Assuntos
Células Epiteliais Alveolares , Glândulas Mamárias Humanas , Gravidez , Animais , Feminino , Humanos , Endorreduplicação , Glândulas Mamárias Animais , Lactação/genética , Leite
2.
Sci Adv ; 10(11): eadj2570, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478622

RESUMO

Ubiquitination plays a crucial role throughout plant growth and development. The E3 ligase DA2 has been reported to activate the peptidase DA1 by ubiquitination, hereby limiting cell proliferation. However, the molecular mechanisms that regulate DA2 remain elusive. Here, we demonstrate that DA2 has a very high turnover and auto-ubiquitinates with K48-linkage polyubiquitin chains, which is counteracted by two deubiquitinating enzymes, UBIQUITIN-SPECIFIC PROTEASE 12 (UBP12) and UBP13. Unexpectedly, we found that auto-ubiquitination of DA2 does not influence its stability but determines its E3 ligase activity. We also demonstrate that impairing the protease activity of DA1 abolishes the growth-reducing effect of DA2. Last, we show that synthetic, constitutively activated DA1-ubiquitin fusion proteins overrule this complex balance of ubiquitination and deubiquitination and strongly restrict growth and promote endoreduplication. Our findings highlight a nonproteolytic function of K48-linked polyubiquitination and reveal a mechanism by which DA2 auto-ubiquitination levels, in concert with UBP12 and UBP13, precisely monitor the activity of DA1 and fine-tune plant organ size.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tamanho do Órgão , Endorreduplicação , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proliferação de Células , Endopeptidases/genética
3.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542329

RESUMO

As a plant-specific endoreplication regulator, the SIAMESE-RELATED (SMR) family (a cyclin-dependent kinase inhibitor) plays an important role in plant growth and development and resistance to stress. Although the genes of the maize (Zea mays) SMR family have been studied extensively, the ZmSMR10 (Zm00001eb231280) gene has not been reported. In this study, the function of this gene was characterized by overexpression and silencing. Compared with the control, the transgenic plants exhibited the phenotypes of early maturation, dwarfing, and drought resistance. Expression of the protein in prokaryotes demonstrates that ZmSMR10 is a small protein, and the results of subcellular localization suggest that it travels functionally in the nucleus. Unlike ZmSMR4, yeast two-hybrid experiments demonstrated that ZmSMR10 does not interact strongly with with some cell cycle protein-dependent protein kinase (CDK) family members ZmCDKA;1/ZmCDKA;3/ZmCDKB1;1. Instead, it interacts strongly with ZmPCNA2 and ZmCSN5B. Based on these results, we concluded that ZmSMR10 is involved in the regulation of endoreplication through the interaction of ZmPCNA2 and ZmCSN5B. These findings provide a theoretical basis to understand the mechanism of the regulation of endoreplication and improve the yield of maize through the use of molecular techniques.


Assuntos
Arabidopsis , Endorreduplicação , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Secas
4.
BMC Biol ; 22(1): 22, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281940

RESUMO

BACKGROUND: Hematophagous mosquitoes transmit many pathogens that cause human diseases. Pathogen acquisition and transmission occur when female mosquitoes blood feed to acquire nutrients for reproduction. The midgut epithelium of mosquitoes serves as the point of entry for transmissible viruses and parasites. RESULTS: We studied midgut epithelial dynamics in five major mosquito vector species by quantifying PH3-positive cells (indicative of mitotic proliferation), the incorporation of nucleotide analogs (indicative of DNA synthesis accompanying proliferation and/or endoreplication), and the ploidy (by flow cytometry) of cell populations in the posterior midgut epithelium of adult females. Our results show that the epithelial dynamics of post-emergence maturation and of mature sugar-fed guts were similar in members of the Aedes, Culex, and Anopheles genera. In the first three days post-emergence, ~ 20% of cells in the posterior midgut region of interest incorporated nucleotide analogs, concurrent with both proliferative activity and a broad shift toward higher ploidy. In mature mosquitoes maintained on sugar, an average of 3.5% of cells in the posterior midgut region of interest incorporated nucleotide analogs from five to eight days post-emergence, with a consistent presence of mitotic cells indicating constant cell turnover. Oral bacterial infection triggered a sharp increase in mitosis and nucleotide analog incorporation, suggesting that the mosquito midgut undergoes accelerated cellular turnover in response to damage. Finally, blood feeding resulted in an increase in cell proliferation, but the nature and intensity of the response varied by mosquito species and by blood source (human, bovine, avian or artificial). In An. gambiae, enterocytes appeared to reenter the cell cycle to increase ploidy after consuming blood from all sources except avian. CONCLUSIONS: We saw that epithelial proliferation, differentiation, and endoreplication reshape the blood-fed gut to increase ploidy, possibly to facilitate increased metabolic activity. Our results highlight the plasticity of the midgut epithelium in mosquitoes' physiological responses to distinct challenges.


Assuntos
Aedes , Anopheles , Animais , Feminino , Bovinos , Humanos , Endorreduplicação , Epitélio , Proliferação de Células , Açúcares , Nucleotídeos
5.
Ann Bot ; 132(7): 1249-1258, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37823772

RESUMO

BACKGROUND AND AIMS: Endoreduplication, the duplication of the nuclear genome without mitosis, is a common process in plants, especially in angiosperms and mosses. Accumulating evidence supports the relationship between endoreduplication and plastic responses to stress factors. Here, we investigated the level of endoreduplication in Ceratodon (Bryophyta), which includes the model organism Ceratodon purpureus. METHODS: We used flow cytometry to estimate the DNA content of 294 samples from 67 localities and found three well-defined cytotypes, two haploids and one diploid, the haploids corresponding to C. purpureus and Ceratodon amazonum, and the diploid to Ceratodon conicus, recombination occurring between the former two. KEY RESULTS: The endoreduplication index (EI) was significantly different for each cytotype, being higher in the two haploids. In addition, the EI of the haploids was higher during the hot and dry periods typical of the Mediterranean summer than during spring, whereas the EI of the diploid cytotype did not differ between seasons. CONCLUSIONS: Endopolyploidy may be essential in haploid mosses to buffer periods of drought and to respond rapidly to desiccation events. Our results also suggest that the EI is closely related to the basic ploidy level, but less so to the nuclear DNA content as previously suggested.


Assuntos
Briófitas , Bryopsida , Diploide , Haploidia , Endorreduplicação/genética , Secas , DNA
6.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511616

RESUMO

Endoreplication-a process that is common in plants and also accompanies changes in the development of animal organisms-has been seen from a new perspective in recent years. In the paper, we not only shed light on this view, but we would also like to promote an understanding of the application potential of this phenomenon in plant cultivation. Endoreplication is a pathway for cell development, slightly different from the classical somatic cell cycle, which ends with mitosis. Since many rounds of DNA synthesis take place within its course, endoreplication is a kind of evolutionary compensation for the relatively small amount of genetic material that plants possess. It allows for its multiplication and active use through transcription and translation. The presence of endoreplication in plants has many positive consequences. In this case, repeatedly produced copies of genes, through the corresponding transcripts, help the plant acquire the favorable properties for which proteins are responsible directly or indirectly. These include features that are desirable in terms of cultivation and marketing: a greater saturation of fruit and flower colors, a stronger aroma, a sweeter fruit taste, an accumulation of nutrients, an increased resistance to biotic and abiotic stress, superior tolerance to adverse environmental conditions, and faster organ growth (and consequently the faster growth of the whole plant and its biomass). The two last features are related to the nuclear-cytoplasmic ratio-the greater the content of DNA in the nucleus, the higher the volume of cytoplasm, and thus the larger the cell size. Endoreplication not only allows cells to reach larger sizes but also to save the materials used to build organelles, which are then passed on to daughter cells after division, thus ending the classic cell cycle. However, the content of genetic material in the cell nucleus determines the number of corresponding organelles. The article also draws attention to the potential practical applications of the phenomenon and the factors currently limiting its use.


Assuntos
Replicação do DNA , Endorreduplicação , Animais , Ciclo Celular , Mitose , DNA , Plantas/genética
7.
PLoS Genet ; 19(6): e1010815, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363926

RESUMO

In prostate cancer, loss of the tumour suppressor gene, Retinoblastoma (Rb), and consequent activation of transcription factor E2F1 typically occurs at a late-stage of tumour progression. It appears to regulate a switch to an androgen-independent form of cancer, castration-resistant prostate cancer (CRPC), which frequently still requires androgen receptor (AR) signalling. We have previously shown that upon mating, binucleate secondary cells (SCs) of the Drosophila melanogaster male accessory gland (AG), which share some similarities with prostate epithelial cells, switch their growth regulation from a steroid-dependent to a steroid-independent form of Ecdysone Receptor (EcR) control. This physiological change induces genome endoreplication and allows SCs to rapidly replenish their secretory compartments, even when ecdysone levels are low because the male has not previously been exposed to females. Here, we test whether the Drosophila Rb homologue, Rbf, and E2F1 regulate this switch. Surprisingly, we find that excess Rbf activity reversibly suppresses binucleation in adult SCs. We also demonstrate that Rbf, E2F1 and the cell cycle regulators, Cyclin D (CycD) and Cyclin E (CycE), are key regulators of mating-dependent SC endoreplication, as well as SC growth in both virgin and mated males. Importantly, we show that the CycD/Rbf/E2F1 axis requires the EcR, but not ecdysone, to trigger CycE-dependent endoreplication and endoreplication-associated growth in SCs, mirroring changes seen in CRPC. Furthermore, Bone Morphogenetic Protein (BMP) signalling, mediated by the BMP ligand Decapentaplegic (Dpp), intersects with CycD/Rbf/E2F1 signalling to drive endoreplication in these fly cells. Overall, our work reveals a signalling switch, which permits rapid growth of SCs and increased secretion after mating, independently of previous exposure to females. The changes observed share mechanistic parallels with the pathological switch to hormone-independent AR signalling seen in CRPC, suggesting that the latter may reflect the dysregulation of a currently unidentified physiological process.


Assuntos
Proteínas de Drosophila , Neoplasias de Próstata Resistentes à Castração , Humanos , Animais , Feminino , Masculino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Endorreduplicação , Ecdisona/genética , Ecdisona/metabolismo , Fator de Transcrição E2F1/genética , Fatores de Transcrição/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
8.
J Exp Bot ; 74(20): 6269-6284, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37343125

RESUMO

Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).


Assuntos
Endorreduplicação , Frutas , Organogênese Vegetal/genética , Ciclo Celular , Mitose
9.
BMC Biol ; 21(1): 88, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069617

RESUMO

BACKGROUND: Endoreplication is involved in the development and function of many organs, the pathologic process of several diseases. However, the metabolic underpinnings and regulation of endoreplication have yet to be well clarified. RESULTS: Here, we showed that a zinc transporter fear-of-intimacy (foi) is necessary for Drosophila fat body endoreplication. foi knockdown in the fat body led to fat body cell nuclei failure to attain standard size, decreased fat body size and pupal lethality. These phenotypes could be modulated by either altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that the intracellular depletion of zinc caused by foi knockdown results in oxidative stress, which activates the ROS-JNK signaling pathway, and then inhibits the expression of Myc, which is required for tissue endoreplication and larval growth in Drosophila. CONCLUSIONS: Our results indicated that FOI is critical in coordinating fat body endoreplication and larval growth in Drosophila. Our study provides a novel insight into the relationship between zinc and endoreplication in insects and may provide a reference for relevant mammalian studies.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Endorreduplicação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Zinco/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mamíferos
10.
Trends Plant Sci ; 28(6): 611-613, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997439

RESUMO

During hypocotyl development, an asymmetric auxin gradient causes differential cell elongation, leading to tissue bending and apical hook formation. Recently, Ma et al. identified a molecular pathway that links auxin with endoreplication and cell size through cell wall integrity sensing, cell wall remodeling, and regulation of cell wall stiffness.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Endorreduplicação , Ácidos Indolacéticos/metabolismo , Tamanho Celular , Regulação da Expressão Gênica de Plantas
11.
PLoS Genet ; 19(1): e1010602, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652497

RESUMO

Silkworm silk gland cells undergo endoreplicating cycle and rapid growth during the larval period, and synthesize massive silk proteins for silk production. In this study, we demonstrated that a binary transgenic CRISPR/Cas9 approach-mediated Fzr mutation in silkworm posterior silk gland (PSG) cells caused an arrest of silk gland growth and a decrease in silk production. Mechanistically, PSG-specific Fzr mutation blocked endoreplication progression by inducing an expression dysregulation of several cyclin proteins and DNA replication-related regulators. Moreover, based on label-free quantitative proteome analysis, we showed in PSG cells that Fzr mutation-induced decrease in the levels of cyclin proteins and silk proteins was likely due to an inhibition of the ribosome biogenesis pathway associated with mRNA translation, and/or an enhance of the ubiquitin-mediated protein degradation pathway. Rbin-1 inhibitor-mediated blocking of ribosomal biogenesis pathway decreased DNA replication in PSG cells and silk production. Altogether, our results reveal that Fzr positively regulates PSG growth and silk production in silkworm by promoting endoreplication and protein synthesis in PSG cells.


Assuntos
Bombyx , Animais , Endorreduplicação , Seda/genética , Biossíntese de Proteínas/genética , Ciclinas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
12.
New Phytol ; 237(5): 1652-1666, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36451535

RESUMO

The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Endorreduplicação , Regulação da Expressão Gênica de Plantas , Mitose
13.
Plant Physiol ; 190(4): 2217-2228, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36063458

RESUMO

Endoreduplication plays an important role in cell growth and differentiation, but the mechanisms regulating endoreduplication are still elusive. We have previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14) encoded by DA3 interacts with ULTRAVIOLETB INSENSITIVE4 (UVI4) to influence endoreduplication and cell growth in Arabidopsis (Arabidopsis thaliana). The da3-1 mutant possesses larger cotyledons and flowers with higher ploidy levels than the wild-type. Here, we identify the suppressor of da3-1 (SUPPRESSOR OF da3-1 3; SUD3), which encodes SNW/SKI-INTERACTING PROTEIN (SKIP). Biochemical studies demonstrate that SUD3 physically interacts with UBP14/DA3 and UVI4 in vivo and in vitro. Genetic analyses support that SUD3 acts in a common pathway with UBP14/DA3 and UVI4 to control endoreduplication. Our findings reveal an important genetic and molecular mechanism by which SKIP/SUD3 associates with UBP14/DA3 and UVI4 to modulate endoreduplication.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Endorreduplicação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Ciclo Celular
14.
STAR Protoc ; 3(3): 101573, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35880131

RESUMO

Murine trophoblast stem cells (TSCs) have shaped placental research by providing resources for investigating trophoblast subtype specialization. Trophoblast giant cells (TGCs) are large polyploid cells, which undergo repetitive rounds of DNA replication without intervening mitosis by a process called endoreduplication. Endocrine and paracrine functions of TGCs aid in maternal adaptations to pregnancy. Here, we describe a protocol for in vitro differentiation of murine TSCs to TGCs together with the genotypic as well as phenotypic characterization of the endoreduplicated TGCs. For complete details on the use and execution of this protocol, please refer to Basak and Ain (2022).


Assuntos
Endorreduplicação , Trofoblastos , Animais , Diferenciação Celular/genética , Feminino , Células Gigantes , Camundongos , Placenta , Gravidez
15.
J Integr Plant Biol ; 64(9): 1673-1689, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35775119

RESUMO

Endoreduplication is prevalent during plant growth and development, and is often correlated with large cell and organ size. Despite its prevalence, the transcriptional regulatory mechanisms underlying the transition from mitotic cell division to endoreduplication remain elusive. Here, we characterize ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 4 (ERF4) as a positive regulator of endoreduplication through its function as a transcriptional repressor. ERF4 was specifically expressed in mature tissues in which the cells were undergoing expansion, but was rarely expressed in young organs. Plants overexpressing ERF4 exhibited much larger cells and organs, while plants that lacked functional ERF4 displayed smaller organs than the wild-type. ERF4 was further shown to regulate cell size by controlling the endopolyploidy level in the nuclei. Moreover, ERF4 physically associates with the class I TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) protein TCP15, a transcription factor that inhibits endoreduplication by activating the expression of a key cell-cycle gene, CYCLIN A2;3 (CYCA2;3). A molecular and genetic analysis revealed that ERF4 promotes endoreduplication by directly suppressing the expression of CYCA2;3. Together, this study demonstrates that ERF4 and TCP15 function as a module to antagonistically regulate each other's activity in regulating downstream genes, thereby controlling the switch from the mitotic cell cycle to endoreduplication during leaf development. These findings expand our understanding of how the control of the cell cycle is fine-tuned by an ERF4-TCP15 transcriptional complex.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Endorreduplicação , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant Commun ; 3(5): 100330, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35617961

RESUMO

Vanilla planifolia, the species cultivated to produce one of the world's most popular flavors, is highly prone to partial genome endoreplication, which leads to highly unbalanced DNA content in cells. We report here the first molecular evidence of partial endoreplication at the chromosome scale by the assembly and annotation of an accurate haplotype-phased genome of V. planifolia. Cytogenetic data demonstrated that the diploid genome size is 4.09 Gb, with 16 chromosome pairs, although aneuploid cells are frequently observed. Using PacBio HiFi and optical mapping, we assembled and phased a diploid genome of 3.4 Gb with a scaffold N50 of 1.2 Mb and 59 128 predicted protein-coding genes. The atypical k-mer frequencies and the uneven sequencing depth observed agreed with our expectation of unbalanced genome representation. Sixty-seven percent of the genes were scattered over only 30% of the genome, putatively linking gene-rich regions and the endoreplication phenomenon. By contrast, low-coverage regions (non-endoreplicated) were rich in repeated elements but also contained 33% of the annotated genes. Furthermore, this assembly showed distinct haplotype-specific sequencing depth variation patterns, suggesting complex molecular regulation of endoreplication along the chromosomes. This high-quality, anchored assembly represents 83% of the estimated V. planifolia genome. It provides a significant step toward the elucidation of this complex genome. To support post-genomics efforts, we developed the Vanilla Genome Hub, a user-friendly integrated web portal that enables centralized access to high-throughput genomic and other omics data and interoperable use of bioinformatics tools.


Assuntos
Vanilla , Cromossomos , Endorreduplicação , Tamanho do Genoma , Haplótipos , Vanilla/genética
17.
Development ; 149(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35388415

RESUMO

Obligate parthenogenesis evolved in reptiles convergently several times, mainly through interspecific hybridization. The obligate parthenogenetic complexes typically include both diploid and triploid lineages. Offspring of parthenogenetic hybrids are genetic copies of their mother; however, the cellular mechanism enabling the production of unreduced cells is largely unknown. Here, we show that oocytes go through meiosis in three widespread, or even strongly invasive, obligate parthenogenetic complexes of geckos, namely in diploid and triploid Lepidodactylus lugubris, and triploid Hemiphyllodactylus typus and Heteronotia binoei. In all four lineages, the majority of oocytes enter the pachytene at the original ploidy level, but their chromosomes cannot pair properly and instead form univalents, bivalents and multivalents. Unreduced eggs with clonally inherited genomes are formed from germ cells that had undergone premeiotic endoreplication, in which appropriate segregation is ensured by the formation of bivalents made from copies of identical chromosomes. We conclude that the induction of premeiotic endoreplication in reptiles was independently co-opted at least four times as an essential component of parthenogenetic reproduction and that this mechanism enables the emergence of fertile polyploid lineages within parthenogenetic complexes.


Assuntos
Lagartos , Animais , Diploide , Endorreduplicação , Lagartos/genética , Partenogênese/genética , Triploidia
18.
Sci Rep ; 12(1): 4302, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277579

RESUMO

The lipid storage droplet-2 (LSD-2) protein of Drosophila is a homolog of mammalian perilipin 2, which is essential for promoting lipid accumulation and lipid droplet formation. The function of LSD-2 as a regulator of lipolysis has also been demonstrated. However, other LSD-2 functions remain unclear. To investigate the role of LSD-2, we performed tissue-specific depletion in the salivary glands of Drosophila using a combination of the Gal4-upstream activating sequence system and RNA interference. LSD-2 depletion inhibited the entry of salivary gland cells into the endoreplication cycle and delayed this process by enhancing CycE expression, disrupting the development of this organ. The deficiency of LSD-2 expression enhanced reactive oxygen species production in the salivary gland and promoted JNK-dependent apoptosis by suppressing dMyc expression. This phenomenon did not result from lipolysis. Therefore, LSD-2 is vital for endoreplication cell cycle and cell death programs.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Apoptose , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endorreduplicação , Lipídeos , Mamíferos/metabolismo , Sistema de Sinalização das MAP Quinases , Glândulas Salivares/metabolismo
20.
Am J Bot ; 109(2): 259-271, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35137947

RESUMO

PREMISE: Endoreduplication, nonheritable duplication of a nuclear genome, is widespread in plants and plays a role in developmental processes related to cell differentiation. However, neither ecological nor cytological factors influencing intraspecific variation in endoreduplication are fully understood. METHODS: We cultivated plants covering the range-wide natural diversity of diploid and tetraploid populations of Arabidopsis arenosa in common conditions to investigate the effect of original ploidy level on endoreduplication. We also raised plants from several foothill and alpine populations from different lineages and of both ploidies to test for the effect of elevation. We determined the endoreduplication level in leaves of young plants by flow cytometry. Using RNA-seq data available for our populations, we analyzed gene expression analysis in individuals that differed in endoreduplication level. RESULTS: We found intraspecific variation in endoreduplication that was mainly driven by the original ploidy level of populations, with significantly higher endoreduplication in diploids. An effect of elevation was also found within each ploidy, yet its direction exhibited rather regional-specific patterns. Transcriptomic analysis comparing individuals with high vs. low endopolyploidy revealed a majority of differentially expressed genes related to the stress and hormone response and to modifications especially in the cell wall and in chloroplasts. CONCLUSIONS: Our results support the general assumption of higher potential of low-ploidy organisms to undergo endoreduplication and suggest that endoreduplication is further integrated within the stress response pathways for a fine-tune adjustment of the endoreduplication process to their local environment.


Assuntos
Arabidopsis , Arabidopsis/genética , Diploide , Endorreduplicação/genética , Ploidias , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...